代表性科研项目: 1、青岛市生态环境局:青岛市区域空间生态环境评价技术指南编制及试点项目,2024.07-2025.06,项目经费:47.8万元(主持); 2、海清(烟台)环保科技有限公司:城市污水处理厂低碳运行工艺调控技术研发,2024.02-2026.02,项目经费:61.7万元(主持); 3、青岛前湾保税港区建设交通环境局:青岛前湾保税港区环境影响跟踪评价项目,2020.06-2023.12,项目经费:245万元(主持); 4、山东省烟台市生态环境局经济技术开发区分局:环境影响评价第三方技术评估项目,2022.06-2025.06,项目经费:210万元(主持); 5、山东省五莲县行政审批服务局:环境影响评价第三方技术评估项目,2021.06-2022.06,项目经费:70万元(主持); 6、青岛融学教育集团有限公司:李沧区文昌路学校及南王安置区幼儿园项目土壤污染状况调查,2020.05-2020.12,项目总经费:49.5万元(主持); 7、青岛市城市规划设计研究院:《青岛市海水淡化矿化专业规划(2017-2030年)》规划环境影响分析,2018.06-2019.03,项目经费:20万元(主持); 8、山东省临沂市:《国家级临沂开发区规划环境影响跟踪评价研究》,2016.01-2017.12,项目经费:10万元(主持); 9、青岛市生态环境局西海岸新区分局:环评技术评估项目,2021.04-2022.04,项目经费:97.6万元(参加); 10、海斯特(青岛)泵业有限公司:智慧水务综合管理控制平台开发,2021.11-2022.04,项目经费:60万元(参加); 11、国家重大科技水专项:南四湖退化湿地生态修复及水质改善技术与示范—子任务水质水量调度方案研究,2010.07-2013.05(参加); 12、国家生态环境部:食品加工制造业水污染物排放标准,2017.01-2019.12(参加); 13、青岛市城乡建设委员会:《青岛市城市综合管廊工程建设技术导则》(试行),2016.01-2017.09(参加)。 代表性论文: 1、Liu C, Yuan X, Ni G, et al. Utilizing deep transfer learning to discover changes in landscape patterns in urban wetland parks based on multispectral remote sensing[J]. Ecological Informatics, 2024,83: 102808. DOI:10.1016/j.ecoinf.2024.102808.(SCI) 2、Liu C, Pang Z, Ni G, et al. A comprehensive methodology for assessing river ecological health based on subject matter knowledge and an artificial neural network[J]. Ecological Informatics, 2023,77. DOI:10.1016/j.ecoinf.2023.102199.(SCI) 3、Zhao D, Chen L, Liu Y, Liu C, Gao W, Miao S. A new scale to assist in evaluating architectural proposals on the natural dimension based on psychometrics[J]. Sustainable Cities and Society, 2024,100:105037. DOI:10.1016/j.scs.2023.105037.(通讯作者,SCI) 4、Liu C, Chen L, Ni G, Yuan X, He S, Miao S. Prediction of heavy metal spatial distribution in soils of typical industrial zones utilizing 3D convolutional neural networks[J]. Scientific Reports, 2025,15(1). DOI:10.1038/s41598-024-84545-3.(SCI) 5、Miao S, Ni G, Kong G, Yuan X, Liu C, Shen X, Gao W. A spatial interpolation method based on 3D-CNN for soil petroleum hydrocarbon pollution[J]. PLOS ONE, 2025,20. DOI:10.1371/journal.pone.0316940.(通讯作者,SCI) 6、Li H, Miao S, Qi Y, Gao H, Duan H, Liu C, Gao W. A comprehensive analysis of soil erosion in coastal areas cased on an unmanned aerial vehicle and deep learning approach[J]. Sustainability, 2025,17(3). DOI:10.3390/su17031261.(通讯作者,SCI) 7、Miao S, Li X, Sun H, Chen X, Zhou C, Shen X, Liu C, Liu C, Gao W. Multi-output behavioral cloning framework: A knowledge-based predictive control methodology based on deep learning for wastewater treatment plants[J]. Journal of Water Process Engineering, 2025,69: 106813. DOI:10.1016/j.jwpe.2024.106813.(通讯作者,SCI) 8、Miao S, Wang C, Kong G, Yuan X, Shen X, Liu C. Utilizing active learning and attention-CNN to classify vegetation based on UAV multispectral data[J]. Scientific Reports, 2024,14(1). DOI:10.1038/s41598-024-82248-3.(通讯作者,SCI) 9、Miao S, Liu Y, Liu Z, Shen X, Liu C, Gao W. A novel attention-based early fusion multi-modal CNN approach to identify soil erosion based on unmanned aerial vehicle[J]. IEEE Access, 2024,12:95152-95164. DOI:10.1109/ACCESS.2024.3425654.(通讯作者,SCI) 10、Liu C, Xu M, Liu Y, et al. Predicting groundwater indicator concentration based on long short-term memory neural network: a case study[J]. International Journal of Environmental Research and Public Health, 2022,19(23). DOI:10.3390/ijerph192315612.(SCI) 11、Liu C, Zhang H, Miao S, et al. Assessment of status and vulnerability to seawater intrusion in Wendeng District, China[J]. Journal of Coastal Research, 2020:546-553. DOI:10.2112/JCR-SI104-095.1.(SCI) 12、Liu C, Li H, Xu J, et al. Applying convolutional neural network to predict soil erosion: a case study of coastal areas[J]. International Journal of Environmental Research and Public Health, 2023,20:2513. DOI:10.3390/ijerph20032513.(SCI) 13、Miao Q, Li X, Xu Y, Liu C, Xie R, Lv Z. Chemical characteristics of groundwater and source identification in a coastal city[J]. PLOS ONE, 2021,16(8). DOI:10.1371/journal.pone.0256360.(通讯作者,SCI) 14、Miao S, Liu C, Qian B , et al. Remote sensing-based water quality assessment for urban rivers: a study in linyi development area[J]. Environmental Science and Pollution Research, 2020,27(28):34586-34595. DOI:10.1007/s11356-018-4038-z.(通讯作者,SCI) 15、Liu C, Qian B, Wang L, et al. Research on spatial-temporal distribution characteristics of main pollutants of the rivers in the Linyi Development Zone[J]. Journal of Water and Climate Change, 2019,10(2):285-297. DOI:10.2166/wcc.2018.187.(SCI) 16、Liu C, Sun L, Shao G, et al. Study on water quality prediction model of sewage treatment system[J]. Journal of Chemical and Pharmaceutical Research, 2013,5:91-95.(EI) 主要专利: 1、一种Fenton-SMAD-BBR处理高浓度有机废水的方法及其装置,发明专利 2、一种基于深度学习的城镇污水厂外加碳源精准控制方法,发明专利 3、基于氧总转移系数的污水处理厂供气量优化方法及系统,发明专利 4、一种基于迁移学习的小尺度区域景观类型精准识别方法,发明专利 5、一种污水处理厂低碳运行调控方法及系统,发明专利 6、一种Fenton-SMAD-BBR处理高浓度有机废水的装置,实用新型 7、污水智能处理系统V1.0,软件著作权,登记号:2020SR1829778 |